
ULT UBS Log Tracker

Exploit Db2’s Log

9/21/2020 © UBS Hainer GmbH, the IBM Business Partner



ULT UBS Log Tracker

Disclaimer

• I do not work for IBM

• I did not develop any part of Db2

• All information in this presentation is based on publicly available API 
documentation, examination of the behavior of Db2 for z/OS, and 
long hours of trial and error

• This presentation has been made to the best of my knowledge but I 
cannot guarantee correctness

• Some aspects are simplified because it either makes things easier to 
understand or I just don’t know any better



ULT UBS Log Tracker

Purpose of the DB2 log

• Essential for maintaining the consistency of the database

• Also essential for recovering objects

• DB2 considers the log so important that it has the option to keep two 
identical copies

• Log records are only added, existing log records are never changed 
or removed

• Bottom line: The log is a protocol of every event that modified data



ULT UBS Log Tracker

Role of the log in ACID properties

• Allows Db2 to roll back a transaction
• Undo all changes made by a transaction

• After explicit ROLLBACK of if the transaction fails for any other reason

• Key element in guaranteeing atomicity of transactions

• Allows DB2 to achieve consistency after a crash
• Write-ahead-log: Changes are written to the log first, then to the table space

• Key element in guaranteeing durability of transactions



ULT UBS Log Tracker

How does Db2 write to the log?

• Log records are written into the log output buffer (fixed in real 
storage), flushed to DASD when full

• At COMMIT time, the log buffer is synchronously written to the 
active log (on DASD)
• Unlike the modified pages, which stay in the buffer pool

• COMMIT is not confirmed until log records are on DASD

• Current active log data set is copied into an archive log (on DASD or 
tape) when it is full, or when the ARCHIVE LOG command is invoked



ULT UBS Log Tracker

Enough warm up. Let’s look at the gory details.



ULT UBS Log Tracker

Structure of the log

Log record Log record Log record Log record

One or more sections with headers, depending on typeLog Record Header

Length URID
RBA of prev.

log record
LRSN

RBA of prev.
undo record

Member
ID

etc.

(not to any scale)

Type,
subtype

All log records have a fixed length log record header (LRH)
that always contains the same fields. Data after the log record
header depends on what the log record represents.



ULT UBS Log Tracker

Log record types

– Unit of recovery log records

● Begin of UR, Commit, Rollback

– Data change log records

● Describe physical changes to a page

● Can represent insert, update, delete in a table space / index

● Can also represent space map changes or other changes

– Checkpoint log records

● Created whenever DB2 creates a checkpoint

● Contain list of open transactions, modified page sets



ULT UBS Log Tracker

Data change log records

● Written whenever something on a page changes

● Always contains:

– LRH

– LGDBHEAD (has fields for DBID, PSID, page#)

● Mostly insert / update / delete, in which case it also contains:

– LGBENTRY (has fields for OBID, slot# in page)



ULT UBS Log Tracker

Making log records visible

● DSN1LOGP

– Specify start and end RBA/LRSN

– Optionally specify filters (DBID, PSID, URID, log record type)

– Output is a hex dump of all matching log records

– Some header fields are formatted, but the rest is hard to read



ULT UBS Log Tracker

Let’s dissect a log record

Image: Wikipedia, License: Public Domain



ULT UBS Log Tracker

Example

0000000000243FFB00A6  TYPE( UNDO  REDO )  URID(0000000000243FFAF8BA)                                                   

LRSN(00D3F3E7C96C60520000)  DBID(0125)  OBID(0002)  PAGE(00000002)                        10:25:08 18.058

SUBTYPE(INSERT IN A DATA PAGE)  CLR(NO)  PROCNAME(DSNISGRT)                                              

*LRH* 000000D1 00A60009 0EA00000 00000000 00000000 00243FFA F8BA0000 00000000  *   J w                  8         

00000000 00243FFB 00005000 06000001 00000000 00000024 3FFB0000 000000D3  *          &                    L  

F3E7C96C 60520000 00000000 00000000                                      *3XI%-

*LG** 08012500 02000000 02000000 00000024 3FFB0000 4C400000 00000000 00000000  *                    <             

00000000                                                                 *                                  

0000  005D4001 00030011 00000000 00000000 00004D00 03018000 00011858 10270012  * )                (               

0020  001A0023 0038003D E3C8C5D6 C4D6D9C5 D9D6D6E2 C5E5C5D3 E3F1F6F0 F040D7C5  *        THEODOREROOSEVELT1600 PE  

0040  D5D5E2C9 D3E5C1D5 C9C140C1 E5C5F2F0 F0F0F6E6 C1E2C8C9 D5C7E3D6 D5        *NNSILVANIA AVE20006WASHINGTON

● Db2 V12 Log record as printed by DSN1LOGP

● INSERT of a row into a tablespace

● DSN1LOGP formats parts of LRH, LGDBHEAD

● DSECT with log record structure: SDSNMACS(DSNDQJ00)



ULT UBS Log Tracker

*LRH* 000000D1 00A60009 0EA00000 00000000 00000000 00243FFA F8BA0000 00000000

00000000 00243FFB 00005000 06000001 00000000 00000024 3FFB0000 000000D3

F3E7C96C 60520000 00000000 00000000                                    

*LG** 08012500 02000000 02000000 00000024 3FFB0000 4C400000 00000000 00000000

00000000                                                               

0000  005D4001 00030011 00000000 00000000 00004D00 03018000 00011858 10270012

0020  001A0023 0038003D E3C8C5D6 C4D6D9C5 D9D6D6E2 C5E5C5D3 E3F1F6F0 F040D7C5

0040  D5D5E2C9 D3E5C1D5 C9C140C1 E5C5F2F0 F0F0F6E6 C1E2C8C9 D5C7E3D6 D5

The new row exactly as it appears in the table space including 6 byte row header

DBID and PSID of the modified table space (DBID X’0125’, PSID X’0002’)

OBID of the table to which the new row belongs (OBID X’0003’)

Indicates that this is a data change record with redo and undo information

Indicates that this log record represents a basic data page change

LRSN of the log record

URID of the log record. Identical for all log records that belong to this transaction.

Page number of the page that was modified (Page X’00000002’

Slot number (“ID map entry”) inside the page

RBA of previous log record within this transaction

If compensation record: RBA of the log record that is compensated by this log record



ULT UBS Log Tracker

INSERT, UPDATE, DELETE

● INSERT and DELETE are simple

– Contain the entire row
● UPDATE is more complex

– Contains before image and after image

– Can be split to more than one log record

– Roughly a dozen different update variations

– With or without data capture changes

– In-place or non in-place

– Can change normal records to pointer records



ULT UBS Log Tracker

UPDATE

● Non-DCC UPDATE records log a partial row

– Only the bytes that changed

– That’s all DB2 needs to apply the log record

● Tricky to restore the full row:

– Identify page and slot number

– Find an older full image of the row (where?)

– Look for additional updates since the identified full image

– Possible, but can take a long time



ULT UBS Log Tracker

Redoing and undoing changes

● REDO: This log record contains information required to apply the 
change

– In this case: DB2 inserts the row found in the log record into the 
table space

– Example: Recovery process

● Restore an image copy

● Then apply all log records up to the desired point in time



ULT UBS Log Tracker

Redoing and undoing changes

● UNDO: This log record contains information required to reverse the 
change

– In this case: DB2 removes the row found in the log record from 
the table space

– Example: Canceling a transaction

● Reverse the effects of all changes that were made in the 
transaction that is being canceled

● While DB2 reverses the changes, it writes log records to 
protocol what it is doing (compensation records)



ULT UBS Log Tracker

Transaction / COMMIT

● Transaction start log record:

– BEGIN UR (the RBA of this log record becomes the URID)

● Log records describing data changes

● Transaction end log records:

– BEGIN COMMIT PHASE1

– SWITCH PHASE 1 TO 2

– END COMMIT PHASE 2



ULT UBS Log Tracker

Transaction / COMMIT

BEGIN UR

RBA

000500

URIDType

000500

INSERT000600 000500

INSERT000700 000500

BEGIN COMMIT1000900 000500

PHASE 1 TO 2000A00 000500

END COMMIT2000B00 000500

Compens.

N

N

Comp.RBA

UPDATE000800 000500 N

Undo Next

000600

000700

000500

000500

000900

000A00

000800



ULT UBS Log Tracker

Multiple Parallel Transactions

BEGIN UR

RBA

000500

URIDType

000500

INSERT000600 000500

BEGIN UR000700 000700

UPDATE000900 000500

INSERT000A00 000700

BEGIN COMMIT1000B00 000500

Compens.

N

N

Comp.RBA

INSERT000800 000500 N

Undo Next

000600

000500

PHASE 1 TO 2000C00 000500

INSERT000D00 000700

BEGIN COMMIT1000F00 000700

PHASE 1 TO 2001000 000700

END COMMIT2001100 000700

N

N

END COMMIT2000E00 000500

000A00

000700

000800

000500

000900

000700

000B00

000C00

000D00

000F00

001000



ULT UBS Log Tracker

Transaction / ROLLBACK

● Transaction start log record:

– BEGIN UR

● Log records describing data changes

● Transaction end log records (for commit):

– BEGIN ABORT

– Log records describing how all changes are undone

– END ABORT



ULT UBS Log Tracker

Transaction / ROLLBACK

BEGIN UR

RBA

000500

URIDType

000500

INSERT000600 000500

INSERT000700 000500

BEGIN ABORT000900 000500

Compens.

N

N

Comp.RBA

UPDATE000800 000500 N

Undo Next

000600

000700

000500

● DB2 must undo all changes from this transaction
● It follows the “undo next” chain
● For each log record that carries UNDO information:

– The change that this log record describes is reverted

– A new log record is written, documenting what was 
done

000500

000800



ULT UBS Log Tracker

BEGIN UR

RBA

000500

URIDType

000500

INSERT000600 000500

INSERT000700 000500

BEGIN ABORT000900 000500

Compens.

N

N

Comp.RBA

UPDATE000800 000500 N

UPDATE000A00 000500 Y 000800

Undo Next

000600

000700

000500

000900

000500

000800

Transaction / ROLLBACK



ULT UBS Log Tracker

BEGIN UR

RBA

000500

URIDType

000500

INSERT000600 000500

INSERT000700 000500

BEGIN ABORT000900 000500

DELETE000B00 000500

Compens.

N

N

Comp.RBA

Y 000700

UPDATE000800 000500 N

UPDATE000A00 000500 Y 000800

Undo Next

000600

000700

000500

000A00

000900

000500

000800

Transaction / ROLLBACK



ULT UBS Log Tracker

BEGIN UR

RBA

000500

URIDType

000500

INSERT000600 000500

INSERT000700 000500

BEGIN ABORT000900 000500

DELETE000B00 000500

DELETE000C00 000500

Compens.

N

N

Comp.RBA

Y

Y

000700

000600

UPDATE000800 000500 N

UPDATE000A00 000500 Y 000800

Undo Next

000600

000700

000500

000A00

000B00

000900

000500

000800

Transaction / ROLLBACK



ULT UBS Log Tracker

BEGIN UR

RBA

000500

URIDType

000500

INSERT000600 000500

INSERT000700 000500

BEGIN ABORT000900 000500

DELETE000B00 000500

DELETE000C00 000500

Compens.

N

N

Comp.RBA

END ABORT000D00 000500

Y

Y

000700

000600

UPDATE000800 000500 N

UPDATE000A00 000500 Y 000800

Undo Next

000600

000700

000500

000A00

000B00

000900

● This is the result

000500

000800

000C00

Transaction / ROLLBACK



ULT UBS Log Tracker

Applying the log

● When DB2 applies log records (for example, when running RECOVER to do a point-in-
time recovery), it will:

– Start at a “baseline” point in time, such as a full copy

– Identify the latest checkpoint before the baseline

– Apply log records in forward direction using “REDO” information.

– Including records from aborted transactions (both the regular and the 
compensation records) – also using the “REDO” information

– Keep track of when transactions open and close

– Use information from checkpoint records to learn about transactions that may be 
idle, but still open

– After reaching the target PIT, undo changes from all records that belong to 
transactions that are still open, using “UNDO” information



ULT UBS Log Tracker

Indexes

● DB2 also writes log records for all indexes (including COPY NO 
indexes)

● Index log records describe:

– Addition / Deletion of Keys

– Addition / Deletion of RIDs

– Index structure changes (e.g., page splits)

– And more



ULT UBS Log Tracker

LOBs

● LOBs with LOG YES

– Log records for space map changes

– Log records for data

● LOBs with LOG NO

– Only log records for space map changes

● LOB updates are never in-place

– Therefore, DB2 can always rollback a transaction, even if the 
LOB is LOG NO



ULT UBS Log Tracker

Table spaces with LOG NO

● DB2 does not write any log records about data changes

● Improves performance

● No ROLLBACK possible

– ROLLBACK results in RECP state

– Programs may cancel a transaction when a SQL error occurs: 
Also results in RECP state

– Need to recover to an image copy



ULT UBS Log Tracker

Checkpoint records

● Written whenever a checkpoint is created. Contain information 
about:

– all transactions in progress at the time of checkpoint

– all objects that were modified by these transactions

– and more information about the current status

● Essentially all the information about the state of all transactions, 
collected in one place

● Which is why DB2 looks for the last checkpoint on the log when it is 
restarted



ULT UBS Log Tracker

• How to find out who changed something



ULT UBS Log Tracker

The problem

● In example table from DB2: DSN81010.EMP, the salary of one of the 
employees looks fishy

● DSN1LOGP cannot really filter by column contents

● Data change records do not tell us who is responsible for the change

● Everything is binary data, not human readable (EBCDIC text is 
readable, though)



ULT UBS Log Tracker

Some assumptions

● We are looking for a row that still exists

● The table space is not compressed

● The row has not moved since the change (e.g. because of a REORG)



ULT UBS Log Tracker

● Employee James Walker is making twice as much as 
the average designer



ULT UBS Log Tracker

Step 1

● Determine internal IDs of the affected object

– In our case: DBID 0x0106, PSID 0x0004

● Determine which row is affected

– SELECT HEX(RID(DSN81010.EMP))
FROM DSN81010.EMP
WHERE EMPNO = '000190'

– Result: 0000000000000211

– Red = page number 0x00000002, blue = slot number 0x11

● Determine approximate time of change (smaller time frame = better)



ULT UBS Log Tracker

Step 2

● Run DSN1LOGP

//DSN1LOGP EXEC PGM=DSN1LOGP

//STEPLIB  DD DISP=SHR,DSN=DSNA10.SDSNLOAD

//BSDS     DD DISP=SHR,DSN=DSNA10.DBAG.BSDS01

//SYSPRINT DD SYSOUT=*

//SYSSUMRY DD SYSOUT=*

//SYSIN    DD *

RBASTART (00ECD81ECF8F)

RBAEND   (00ECD81FAD0B)

DATAONLY (YES)

DBID     (0106)

OBID     (0004)

RID      (0000000211)

SUBTYPE  (1)

/*

Subtype 1 means Undo/Redo records,
basic data page change



ULT UBS Log Tracker

● DSN1LOGP converts the LRSN into a timestamp
● The EBCDIC text confirms it is the correct row
● The URID tells us in which transaction the change was 

made



ULT UBS Log Tracker

● A field was changed from 20450.00 to 40900.00

● Standard representation would be 0xF002045000 
and 0xF004090000

● DB2 starts logging after ...F0 because everything up 
to and including this byte has not changed

● Also, this column has an editproc...



ULT UBS Log Tracker

Step 3

● Run DSN1LOGP again

//DSN1LOGP EXEC PGM=DSN1LOGP

//STEPLIB  DD DISP=SHR,DSN=DSNA10.SDSNLOAD

//BSDS     DD DISP=SHR,DSN=DSNA10.DBAG.BSDS01

//SYSPRINT DD SYSOUT=*

//SYSSUMRY DD SYSOUT=*

//SYSIN    DD *

RBASTART (00ECD81ECF8F)

RBAEND   (00ECD81FAD0B)

DATAONLY (YES)

URID     (00ECD81FAAB9)

/*
Limit output to the transaction we have identified



ULT UBS Log Tracker

● The BEGIN UR record for this URID shows, among 
other things, the user name and the plan name



ULT UBS Log Tracker

Revisit our assumptions

● We are looking for a row that still exists

– So we can use the RID function

– If the row has been deleted: no practical way to determine old 
row position



ULT UBS Log Tracker

Revisit our assumptions

● The table space is not compressed

– Log records contain raw binary data, therefore they are also 
compressed / encrypted

– Compression: Need to decompress row using the correct 
decompression dictionary

– Decompression dictionary from VSAM may not be the correct 
one



ULT UBS Log Tracker

Revisit our assumptions

● The row has not moved since the change (e.g. because of a REORG)

– If it has moved, the RID function will return the new position

– But the log record refers to the old position



ULT UBS Log Tracker

9/21/2020 © UBS Hainer GmbH, the IBM Business Partner

Thank you for 

your attention

Contact us:
info@ubs-hainersoftware.com

mailto:stursman@usb-hainersoftware.com

