ULT UBS Log Tracker

Exploit Db2’s Log

UBS

HAINER

9/21/2020 © UBS Hainer GmbH, the IBM Business Partner

ULT UBS Log Tracker

Disclaimer

* | do not work for IBM
* | did not develop any part of Db2

* All information in this presentation is based on publicly available API
documentation, examination of the behavior of Db2 for z/OS, and
long hours of trial and error

* This presentation has been made to the best of my knowledge but |
cannot guarantee correctness

* Some aspects are simplified because it either makes things easier to
understand or | just don’t know any better

ULT UBS Log Tracker

Purpose of the DB2 log

* Essential for maintaining the consistency of the database
* Also essential for recovering objects

* DB2 considers the log so important that it has the option to keep two
identical copies

* Log records are only added, existing log records are never changed
or removed

* Bottom line: The log is a protocol of every event that modified data

Role of the log in ACID properties

* Allows Db2 to roll back a transaction
* Undo all changes made by a transaction
* After explicit ROLLBACK of if the transaction fails for any other reason
* Key element in guaranteeing atomicity of transactions

* Allows DB2 to achieve consistency after a crash
* Write-ahead-log: Changes are written to the log first, then to the table space
» Key element in guaranteeing durability of transactions

ULT UBS Log Tracker
How does Db2 write to the log?

* Log records are written into the log output buffer (fixed in real
storage), flushed to DASD when full

* At COMMIT time, the log buffer is synchronously written to the
active log (on DASD)
* Unlike the modified pages, which stay in the buffer pool
* COMMIT is not confirmed until log records are on DASD

* Current active log data set is copied into an archive log (on DASD or
tape) when it is full, or when the ARCHIVE LOG command is invoked

ULT UBS Log Tracker

Enough warm up. Let's look at the gory details.
UBS

HAINER

ULT UBS Log Tracker

Structure of the log (not o any scale)

One or more sections with headers, depending on type \

RBA of prev.
log record

Type,
subtype

RBA of prev.
undo record

Member
ID

Length URID

LRSN etc

-

All log records have a fixed length log record header (LRH)
that always contains the same fields. Data after the log record
header depends on what the log record represents.

UBS

HAINER

ULT UBS Log Tracker

Log record types

- Unit of recovery log records
. Begin of UR, Commit, Rollback
- Data change log records
. Describe physical changes to a page
. Canrepresentinsert, update, delete in a table space / index
. Can also represent space map changes or other changes
- Checkpoint log records
. Created whenever DB2 creates a checkpoint
. Contain list of open transactions, modified page sets

ULT UBS Log Tracker

Data change log records

. Written whenever something on a page changes
. Always contains:

- LRH

- LGDBHEAD (has fields for DBID, PSID, page#)
. Mostly insert / update / delete, in which case it also contains:

- LGBENTRY (has fields for OBID, slot# in page)

ULT UBS Log Tracker

Making log records visible

. DSN1LOGP
- Specify start and end RBA/LRSN
- Optionally specify filters (DBID, PSID, URID, log record type)
- Output is a hex dump of all matching log records

- Some header fields are formatted, but the rest is hard to read

ULT UBS Log Tracker

Let’s dissect a log record

Image: Wikipedia, License: Public Domain

ULT UBS Log Tracker

Example

. Db2V12 Logrecord as printed by DSN1LOGP

. INSERT of a row into a tablespace

. DSN1LOGP formats parts of LRH, LGDBHEAD

. DSECT with log record structure: SDSNMACS(DSNDQJoo)

0000000000243FFBOGA6 TYPE(UNDO REDO) URID(Q000000000243FFAF8BA)
LRSN(OOD3F3E7C96C60520000) DBID(0125) OBID(0002) PAGE(00000002) 10:25:08 18.058
SUBTYPE(INSERT IN A DATA PAGE) CLR(NO) PROCNAME(DSNISGRT)

LRH 000000D1 O0A60009 OEAGOOOO 0OOCEEEOO 00OEEOO0 00243FFA FBBAGOOO 0OOEEEEO * Jw 8
00000000 00243FFB 00005000 06000001 00OEEEOO 0OOEEE24 3FFBOEOO 000OEED3 * & L
F3E7C96C 60520000 00000000 OOCOEOOO *3XI%-

*LG** 08012500 02000000 02000000 00000024 3FFBOOOO 4C400000 OOOOOOOO 0OOOOOOO * <
000000060 *

0000 005D4001 00030011 0OEOOOEO O0EEOOOEO O0EOO04DOO 03018000 00011858 10270012 * (

0020 001A0023 0038003D E3C8C5D6 C4D6DI9C5 DID6DEE2 CS5E5C5D3 E3F1F6FO FO40D7C5 * THEODOREROOSEVELT1600 PE

0040 DS5D5E2C9 D3E5C1D5 C9C140C1 E5C5F2F0 FOFOFG6E6 C1lE2C8C9 D5C7E3D6 D5 *NNSILVANIA AVE20006WASHINGTON

UBS

ULT

UBS Log Tracker

LRH

*LG**

0000
0020
0040

0000060D1 OOGAGO009
00000000 00243FFB
F3E7C96C 60520000
08012500 02000000
00000000

005D4088 00030011
001A0023 0O0380603D
D5D5E2C9 D3ES5C1D5

URID of the log record.

OEAOOOBO OOOEEEEO
00005000 ©6060001
0000NNNO AEAAAOOE
02000000 0OOEEE24

00000000 OOOEOO60
E3C8C5D6 C4D6D9C5
C9C140C1 E5CSF2F0

Identical for all log records that belong to this transaction.

00000000
00000000

3FFBOOOO
00004D0O0O

DODG6DG6E?2
FOFOFGEG

RBA of previous log record within this transaction

00243FFA
00000024

4C400000
03018000

C5E5C5D3
C1E2C8C9

F8BAOOOO
3FFBOOOO

oJoJofoJefefele)
00011858

E3F1F6F0O
D5C7E3D6

- Indicates that this is a data change record with redo and undo information

- LRSN of the log record

Indicates that this log record represents a basic data page change

DBID and PSID of the modified table space (DBID X'0125’, PSID X'0002’)

Page number of the page that was modified (Page X'00000002’

000000060
000000D3

00000000
10270012

FO40D7C5
D5

If compensation record: RBA of the log record that is compensated by this log record

- Slot number (*ID map entry”) inside the page

- OBID of the table to which the new row belongs (OBID X'0003)

The new row exactly as it appears in the table space including 6 byte row header

UBS

ULT UBS Log Tracker

INSERT, UPDATE, DELETE

. INSERT and DELETE are simple

- Contain the entire row
. UPDATE is more complex

- Contains before image and afterimage

— Can be split to more than one log record

- Roughly a dozen different update variations

- With or without data capture changes

- In-place or nonin-place

- Can change normal records to pointer records

ULT UBS Log Tracker

UPDATE

. Non-DCC UPDATE records log a partial row
— Only the bytes that changed

- That's all DB2 needs to apply the log record
. Tricky to restore the full row:

- Identify page and slot number

- Find an older full image of the row (where?)

- Look for additional updates since the identified full image
- Possible, but can take a long time

ULT UBS Log Tracker

Redoing and undoing changes

. REDO: This log record contains information required to apply the
change

— In this case: DB2 inserts the row found in the log record into the
table space

- Example: Recovery process
. Restore an image copy

. Then apply all log records up to the desired point in time

ULT UBS Log Tracker

Redoing and undoing changes

. UNDO: This log record contains information required to reverse the
change

~ In this case: DB2 removes the row found in the log record from
the table space

- Example: Canceling a transaction

. Reverse the effects of all changes that were made in the
transaction that is being canceled

. While DB2 reverses the changes, it writes log records to
protocol what it is doing (compensation records)

ULT UBS Log Tracker
Transaction [COMMIT

. Transaction start log record:

- BEGIN UR (the RBA of this log record becomes the URID)
. Log records describing data changes
. Transaction end log records:

- BEGIN COMMIT PHASEa
- SWITCH PHASE 2TO 2
- END COMMIT PHASE 2

ULT UBS Log Tracker

Transaction / COMMIT

RBA Type URID Compens. Comp.RBA Undo Next
000500 | BEGIN UR 000500 000500 @
000600 | INSERT 000500 N 000500 |
000700 | INSERT 000500 N 000600 4{
000800 | UPDATE 000500 N 000700 *
000900 | BEGIN COMMIT1 000500 000800 *
000A00 | PHASE 1TO 2 000500 000900 *
000800 | END COMMIT2 000500 000A00 !

UBS

ULT

UBS Log Tracker

Multiple Parallel Transactions

RBA

000500
000600
000700
000800
000900
O000AO0O

000B0OO0
000C00

000DO00
OOOEOO
OOOF0O0
001000
001100

Type URID Compens. Comp.RBA Undo Next
BEGIN UR 000500 000500 @
INSERT 000500 N 000500 5 |
BEGIN UR 000700 000700 |,
INSERT 000500 000600 | |
UPDATE 000500 N 000800 ,
INSERT 000700 000700
BEGIN COMMIT1 000500 000900
PHASE 1 TO 2 000500 000B0O , |
INSERT 000700 N 000AQ0
END COMMIT2 000500 000C00
BEGIN COMMIT1 000700 000D00
PHASE 1 TO 2 000700 000F00 |
END COMMIT2 000700 001000 |

UBS

Transaction /| ROLLBACK

. Transaction start log record:

- BEGIN UR
. Log records describing data changes
. Transaction end log records (for commit):

- BEGIN ABORT
- Log records describing how all changes are undone
- END ABORT

ULT UBS Log Tracker

TransactIOn [ROLLBACK

Type URID Compens. Comp.RBA Undo Next

000500 BEGIN UR 000500 000500

000600 INSERT 000500 N 000500

000700 INSERT 000500 N 000600

000800 UPDATE 000500 N 000700

>Ry

000900 BEGIN ABORT 000500 000800

. DB2 must undo all changes from this transaction
. It follows the "undo next” chain
. For each log record that carries UNDO information:

- The change that this log record describes is reverted

- Anew log record is written, documenting what was
done
W

ULT

000500
000600
000700
000800
000900
OO0OAOO

UBS Log Tracker

TransactIOn [ROLLBACK

Type URID Compens. Comp.RBA Undo Next
BEGIN UR 000500 000500
INSERT 000500 N 000500
INSERT 000500 N 000600
UPDATE 000500 N A 000700
BEGIN ABORT 000500 000800
UPDATE 000500 Y — 000800 000900

TR

UBS

ULT UBS Log Tracker

TransactIOn [ROLLBACK

Type URID Compens. Comp.RBA Undo Next
000500 | BEGIN UR 000500 000500 D
000600 | INSERT 000500 N 000500 i
000700 | INSERT 000500 N A 000600 L
000800 | UPDATE 000500 N A 000700 *
000900 | BEGIN ABORT 000500 000800 *
000A00 | UPDATE 000500 Y = 000800 000900 *
000BO0 | DELETE 000500 Y — 000700 000A00 '

UBS

ULT UBS Log Tracker

TransactIOn [ROLLBACK

Type URID Compens. Comp.RBA Undo Next
000500 | BEGIN UR 000500 000500 D
000600 | INSERT 000500 N A 000500 i
000700 | INSERT 000500 N A 000600 L
000800 | UPDATE 000500 N A 000700 *
000900 | BEGIN ABORT 000500 000800 *
000A00 | UPDATE 000500 Y = 000800 000900 *
000BO0 | DELETE 000500 Y — 000700 000A00 *
000C00 | DELETE 000500 Y — 000600 oooBoo !

UBS

ULT UBS Log Tracker

TransactIOn [ROLLBACK

Type URID Compens. Comp.RBA Undo Next
000500 |BEGIN UR 000500 000500 D
000600 | INSERT 000500 N A 000500 i
000700 | INSERT 000500 N A 000600 *
000800 UPDATE 000500 N A 000700 *
000000 | BEGIN ABORT 000500 000800 *
000A00 |UPDATE 000500 Y - 000800 000900 *
000B00 |DELETE 000500 Y — 000700 000AOQO *
000C00 |DELETE 000500 Y —— 000600 000BOO *
000000 | END ABORT 000500 ooocoo !

. Thisis the result

UBS

Applying the log

. When DB2 applies log records (for example, when running RECOVER to do a point-in-
time recovery), it will:

- Start at a "baseline” point in time, such as a full copy
~ Identify the latest checkpoint before the baseline
- Apply log records in forward direction using "REDO" information.

- Including records from aborted transactions (both the reqular and the
compensation records) — also using the "REDO"” information

- Keep track of when transactions open and close

- Use information from checkpoint records to learn about transactions that may be
idle, but still open

- After rea]chinghthe target PIT, undo changes from all records that belong to
transactions that are still open, using "UNDO" information .
UBS

ULT UBS Log Tracker

Indexes

. DB2 also writes log records for all indexes (including COPY NO
indexes)

. Index log records describe:
- Addition [Deletion of Keys
- Addition / Deletion of RIDs
- Index structure changes (e.qg., page splits)

- And more

ULT UBS Log Tracker

LOBs

. LOBs with LOGYES
- Log records for space map changes

- Log records for data
. LOBs with LOG NO

- Only log records for space map changes
. LOB updates are never in-place

- Therefore, DB2 can always rollback a transaction, even if the
LOB is LOG NO

ULT UBS Log Tracker

Table spaces with LOG NO

. DB2 does not write any log records about data changes
. Improves performance
. No ROLLBACK possible

— ROLLBACK results in RECP state

- Programs may cancel a transaction when a SQL error occurs:
Also results in RECP state

- Need to recover to an image copy

ULT UBS Log Tracker

Checkpoint records

. Written whenever a checkpoint is created. Contain information
about:
- all transactions in progress at the time of checkpoint

- all objects that were modified by these transactions

- and more information about the current status

. Essentially all the information about the state of all transactions,
collected in one place

. Which is why DB2 looks for the last checkpoint on the log when it is
restarted

ULT UBS Log Tracker

* How to find out who changed something

ULT UBS Log Tracker

The problem

. In example table from DB2: DSN81010.EMP, the salary of one of the
employees looks fishy

. DSN1LOGP cannot really filter by column contents
. Data change records do not tell us who is responsible for the change

. Everything is binary data, not human readable (EBCDIC text is
readable, though)

ULT UBS Log Tracker

Some assumptions

. We are looking for a row that still exists
. The table space is not compressed
. The row has not moved since the change (e.g. because of a REORG)

i ¢ K o o sk ok oK oK oK 3K 3K oK 3K ok ok Ok o ok oKk oK 3K K KK 3K K 3K oK 3K K ok K ok Kk ok sk ok oK oK oK KK K KR K koK koK ok okokokokkokkk kkk - Top of Data
MIDIMIT LASTMNAME

vaa1BE
llllll

llllHl
uopzao
(2]]6 Vs NG|
2] 816 Mad]
BepZ3u
BopzZ4o
BoOZ50
BooZ60
BooZ70
2]a)a Maaly]
Booz290
Boo300

208010
208120
2081408

FIRSTNME

CHRISTINE
MICHAEL
SALLY
JOHN
IRVING
EvVA
EILEEN
THEODORE
VINCENZO
SEAN
DOLORES
HEATHER
BRUCE
ELIZABETH
MASATOSHI
MARILYN
JAMES
DAVID
WILLIAM
JENNIFER
JAMES
SALVYATORE
DANIEL
SYBIL
MARIA
ETHEL
JOHN
PHILIP
MAUDE
RAMLAL
WING
JASON
DIAN

GREG

KIM

Employee James Walker is making twice as much as
the average designer

X=X OoEZomMmITrr -

TN ®

T
K
J
M
5
Y
L
R
R
X
F
v

THOMPSON
KWAN
GEYER
STERN
PULASKI
HENDERSON
SPENSER
LUCCHESI
0 'CONNELL
OQUINTANA
NICHOLLS
ADAMSON
PIANKA
YOSHIMURA
SCOUTTEN
WALKER
BROWN
JONES
LuTZ
JEFFERSON
MARINO
SMITH
JOHNSON
PEREZ
SCHNEIDER
PARKER
SMITH
SETRIGHT
MEHTA

LEE
GOUNDT
HEMMINGER
ORLANDO
NATZ

WORKDEPT PHOMENO HIREDATE

ABe

9001
8997
4502
ZB895
3332
9990
2183
5698
3978
Z1lbTr
1793

B5.
30.

11
30
24
30
19
12
ar
23
a5
g1
a5

15.

.B2.
.18.
.89.
.a7.
.a7.
.B3.
.84,
.B3.
.11,
12.
10.
.B9.
.B9.
.B83.
.B5.
.B6.
.B9.
.a7.
.B2.
.B5.
.81.
.B5.
12 .

MANAGER
MANAGER
MANAGER
MANAGER
MANAGER
MANAGER
MANAGER
SALESREP
CLERK
ANALYST
ANALYST
DESIGNER
DESIGNER
DESIGNER
DESIGNER
DESIGNER
DESIGNER
DESIGNER
DESIGNER
CLERK
CLERK
CLERK
CLERK
CLERK
OPERATOR
OPERATOR
OPERATOR
OPERATOR
FIELDREP
FIELDREP
FIELDREP
SALESREP
CLERK
ANALYST

EDLEVEL

LSRR S EEEFEEEEEEEEEEEEE LS

SEX BIRTHDATE

TZTMTITITIZIITMTONMIZIZINIIIZINININTMNMIIITMIITIMDM

Bz ..
11.0
15.0
a7 ..
26 .0
15.0

18.
us.
18.

15
19
1r
1z
85
Z1
Z5
Z9
Z3
19
30
31

12.
B5.

26
28
09

27 .

Z1
11
18
1r
14

18.

19

10.
.09.
.01,
.05.
.04.
.01,
.BZ.
.BB.
.B5.
.BZ.
.B3.
.B5.
.B3.
11.
10.
.B5.
.B3.
.a7.
18.
.04
.u8.
.07
.05.
.08.
10.
.01,

SALARY

52750 .00
41250 .00
38250 . 00
40175 . 00
32250 .00
36170 .00
29750 . 00
26150 . 80
46500 . E

23800 . DE

22250 . 0OC
24680 . OF
c1340.T

40900 . OC
27740 0o
18270, OE
29840 . OC
27180 .0C
28760 . OF
19180 . 0E
17250 . O
27380.0C
26250 . OF
15340 . BE
17750 .€

15900

29250 . bE
28470 . OE

UBS

ULT UBS Log Tracker
Step 1

. Determine internal IDs of the affected object

— In our case: DBID oxo0106, PSID oxo004
. Determine which row is affected

- SELECT HEX(RID(DSN81010.EMP))
FROM DSN81010.EMP
WHERE EMPNO ="'000190'

— Result: 0000000000000211
- Red = page number 0x00000002, blue = slot number oxa1
. Determine approximate time of change (smaller time frame = better)

ULT UBS Log Tracker
Step 2

. Run DSNa1LOGP

//DSN1LOGP EXEC PGM=DSN1LOGP
//STEPLIB DD DISP=SHR, DSN=DSNA10.SDSNLOAD
//BSDS DD DISP=SHR, DSN=DSNA10.DBAG.BSDSO1
//SYSPRINT DD SYSOUT=*
//SYSSUMRY DD SYSOUT=*
//SYSIN DD *

RBASTART (©OECD81ECFS8F)

RBAEND (©OECD81FADOB)

DATAONLY (YES)

DBID (0106)
OBID (0004) Subtype 1 means Undo/Redo records,

RID (0000000211 basic data page change
SUBTYPE (1)

/ *
UBS

SEARCH CRITERIA
STARTRBA(BBECDB1ECFBF) ENDRBA(BOECDB1FADOB)
SUMMARY (NO)
ULT DATAONLY(YES)
SYSCOPY(NO)
ALL URIDS YOU MAY SPECIFY URID{XXXXXXXXXXXX)
ALL LUWIDS === YOU MAY SPECIFY LUWID(NNNNNNNN.LLLLLLLL .XXXXXXXXXXXX.XXXX)
DBID(B106) THE FOLLOWING OBIDS SPECIFIED: BEB4
THE FOLLOWING PAGES SPECIFIED: lalalalalalapa
ALL TYPES === YOU MAY SPECIFY TYPE(XX)
SUBTYPE(BB01)

THE FOLLOWING OFFSETS, VALUES SPECIFIED:
OFFSET(DDROBB3B)
WS TMN| Sy Qalalalalal e a]aYalaYalaYalaYala)alaYa a]ala]ala)aalala)ala)ala)ala)alalala]ala]ala]a]la]al]l ala]a)a]a)ala)ala]ala]c a]c [R I D]

DSN1Z121 DSNILGRD FIRST LOG RBA ENMCOUNTERED HBHECDB1ECFBF

MOECDB1FABBS TYPE(UNDO REDO J§ _URID(GOBECDB1FAABY)

LRSN{D1ZB4FADTHET) Comathissmeia@a¥dt4) PAGE(DODROROZ) 15:53:29 16.22Z

SUBTYPE(UPDATE NOT IN-PLACE , DATA PART ONLY IN A DATA PAGE)

CLR(NO) PROCNAME(DSNIREPR)

bB0840030 D6000BB1 DEBODBOEC DB1FAABYS BOECDS1F ABT80T7Z6 BDBECD81F ABTBD1ZB d

4FADTBET BOOO
80010600 4000000 DZ0000BB DOOODDOOE ZDOO
BB4C6111 BBE128218 BU30001F UDU1FON904 PODOODFE BOD40000 DBFOOO16 3600003E] O
Bu43D1C1 D4CSEZEB C1D3DZCS5 DYB40Z00 S5000FBDEE B4000000 FBOD1636 BBUU3EOD JAMESWALKER
43D1C1D4 CS5EZEGC1 D3DZCSDS9 WlAMESWALKER.

b

*
¥
*
*

DSN12131 DSNILGRD LAST LOG RBA ENCOUNTERED BVUECD81FADOB

. DSN1LOGP converts the LRSN into a timestamp
. The EBCDIC text confirms it is the correct row

. The URID tells us in which transaction the change was
made

UBS

ULT UBS Log Tracker

UU1FHY9d4 BUUUUUE G

D94 200 SUUBFHBE

. A field was changed from 20450.00 to 40900.00

. Standard representation would be oxFoo2045000
and oxF004090000

. DB2 starts logging after ...Fo because everything up
to and including this byte has not changed

. Also, this column has an editproc...

ULT UBS Log Tracker

Step 3

. Run DSN1LOGP again

//DSN1LOGP EXEC PGM=DSN1LOGP
//STEPLIB DD DISP=SHR, DSN=DSNA10.SDSNLOAD
//BSDS DD DISP=SHR, DSN=DSNA10.DBAG.BSDSO1
//SYSPRINT DD SYSOUT=*
//SYSSUMRY DD SYSOUT=*
//SYSIN DD *

RBASTART (OOECDS81ECFSF)

RBAEND (@OECDS81FADOB)

DATAONLY (YES)

URID (OOECD81FAABY9) «——— Limit output to the transaction we have identified
/*

UBS

ULT UBS Log Tracker

YPE(UR CONTROL) SUBTYPE(BEGIN UR) 15:53:29 1b.227

DE1FAABYS OUOOOBOEEN BB YZE OOOBOOAOE OBOEOD1ZEB * J
¥ |

OO 7R BEBDDZC1 C9404040 404040468 4040DZC1 % KAI KA

1000C1C4 CZ2404040 4040CZC1 E3C3CE840 404HE3EZ %1 J | BATCH TS

HDOR1A BE1DSCS E3C44040 4040C4ACZ CI1C/YD3IE4 %0 NETD DBAGLU
x1 J |

. The BEGIN UR record for this URID shows, among
other things, the user name and the plan name

UBS

ULT UBS Log Tracker

Revisit our assumptions

. We are looking for a row that still exists
- So we can use the RID function

- If the row has been deleted: no practical way to determine old
row position

ULT UBS Log Tracker

Revisit our assumptions

. The table space is not compressed

- Log records contain raw binary data, therefore they are also
compressed [encrypted

- Compression: Need to decompress row using the correct
decompression dictionary

- Decompression dictionary from VSAM may not be the correct
one

ULT UBS Log Tracker

Revisit our assumptions

. The row has not moved since the change (e.g. because of a REORG)
- If it has moved, the RID function will return the new position

- But the log record refers to the old position

ULT UBS Log Tracker

Thank you for
your attention

Contact us:
info@ubs-hainersoftware.com

9/21/2020 © UBS Hainer GmbH , the IBM Business Partner

mailto:stursman@usb-hainersoftware.com

